added hardware specifications

This commit is contained in:
Zechert, Frank (EXTERN: Capgemini) 2020-12-09 04:34:38 +01:00
parent f0009a67cc
commit be7b2568a0
5 changed files with 842 additions and 0 deletions

BIN
hardware/meeting-clock.fzz Normal file

Binary file not shown.

View File

@ -0,0 +1,91 @@
// SerialIn_SerialOut_004
//
// Uses hardware serial to talk to the host computer and Software
// Serial for communication with the bluetooth module
//
// What ever is entered in the serial monitor is sent to the connected
// device
// Anything received from the connected device is copied to the serial
// monitor
//
// Pins
// BT VCC to Arduino 5V out.
// BT GND to GND
// Arduino D8 (SS RX) - BT TX no need voltage divider
// Arduino D9 (SS TX) - BT RX through a voltage divider (5v to 3.3v)
//
// Setup procedure
/*
* AT
* AT+ORGL
* // restart
* AT
* AT+NAME=Meeting Clock
* AT+NAME?
* AT+PSWD="1812"
* AT+PSWD?
* AT+UART=9600,1,0
* AT+UART?
*/
#include <SoftwareSerial.h>
SoftwareSerial BTserial(5, 4); // RX, TX
#define STATE_PIN 3
char c = ' ';
boolean NL = true;
void setup()
{
Serial.begin(9600);
Serial.print("Sketch: "); Serial.println(__FILE__);
Serial.print("Uploaded: "); Serial.println(__DATE__);
Serial.println(" ");
BTserial.begin(38400); // for at mode
//BTserial.begin(9600); // for echo mode
Serial.println("BTserial started at 9600");
Serial.println(" ");
pinMode(STATE_PIN, INPUT);
}
bool state = false;
void loop()
{
if (digitalRead(STATE_PIN) != state) {
state = digitalRead(STATE_PIN);
Serial.print("! new BT state: ");
if (state) {
Serial.println("Connected");
} else {
Serial.println("Disconnected");
}
}
// Read from the Bluetooth module and send to the Arduino Serial
// Monitor
if (BTserial.available())
{
c = BTserial.read(); Serial.write(c);
}
// Read from the Serial Monitor and send to the Bluetooth module
if (Serial.available())
{
c = Serial.read();
BTserial.write(c);
// Echo the user input to the main window. The ">" character
// indicates the user entered text.
if (NL) {
Serial.print(">");
NL = false;
}
Serial.write(c);
if (c == 10) {
NL = true;
}
}
}

View File

@ -0,0 +1,625 @@
// Program to exercise the MD_MAX72XX library
//
// Uses most of the functions in the library
#include <MD_MAX72xx.h>
//#include <SPI.h>
// Turn on debug statements to the serial output
#define DEBUG 1
#if DEBUG
#define PRINT(s, x) { Serial.print(F(s)); Serial.print(x); }
#define PRINTS(x) Serial.print(F(x))
#define PRINTD(x) Serial.println(x, DEC)
#else
#define PRINT(s, x)
#define PRINTS(x)
#define PRINTD(x)
#endif
// Define the number of devices we have in the chain and the hardware interface
// NOTE: These pin numbers will probably not work with your hardware and may
// need to be adapted
#define HARDWARE_TYPE MD_MAX72XX::FC16_HW
#define MAX_DEVICES 4
#define CS_PIN 6 // or SS
// SPI hardware interface
MD_MAX72XX mx = MD_MAX72XX(HARDWARE_TYPE, CS_PIN, MAX_DEVICES);
// Arbitrary pins
//MD_MAX72XX mx = MD_MAX72XX(HARDWARE_TYPE, DATA_PIN, CLK_PIN, CS_PIN, MAX_DEVICES);
// We always wait a bit between updates of the display
#define DELAYTIME 300 // in milliseconds
void scrollText(const char *p)
{
uint8_t charWidth;
uint8_t cBuf[8]; // this should be ok for all built-in fonts
PRINTS("\nScrolling text");
mx.clear();
while (*p != '\0')
{
charWidth = mx.getChar(*p++, sizeof(cBuf) / sizeof(cBuf[0]), cBuf);
for (uint8_t i=0; i<=charWidth; i++) // allow space between characters
{
mx.transform(MD_MAX72XX::TSL);
if (i < charWidth)
mx.setColumn(0, cBuf[i]);
delay(DELAYTIME);
}
}
}
void zeroPointSet()
// Demonstrates the use of setPoint and
// show where the zero point is in the display
{
PRINTS("\nZero point highlight");
mx.clear();
if (MAX_DEVICES > 1)
mx.setChar((2*COL_SIZE)-1, '0');
for (uint8_t i=0; i<ROW_SIZE; i++)
{
mx.setPoint(i, i, true);
mx.setPoint(0, i, true);
mx.setPoint(i, 0, true);
delay(DELAYTIME);
}
delay(DELAYTIME*3);
}
void rows()
// Demonstrates the use of setRow()
{
PRINTS("\nRows 0->7");
mx.clear();
for (uint8_t row=0; row<ROW_SIZE; row++)
{
mx.setRow(row, 0xff);
delay(2*DELAYTIME);
mx.setRow(row, 0x00);
}
}
void checkboard()
// nested rectangles spanning the entire display
{
uint8_t chkCols[][2] = { { 0x55, 0xaa }, { 0x33, 0xcc }, { 0x0f, 0xf0 }, { 0xff, 0x00 } };
PRINTS("\nCheckboard");
mx.clear();
for (uint8_t pattern = 0; pattern < sizeof(chkCols)/sizeof(chkCols[0]); pattern++)
{
uint8_t col = 0;
uint8_t idx = 0;
uint8_t rep = 1 << pattern;
while (col < mx.getColumnCount())
{
for (uint8_t r = 0; r < rep; r++)
mx.setColumn(col++, chkCols[pattern][idx]); // use odd/even column masks
idx++;
if (idx > 1) idx = 0;
}
delay(10 * DELAYTIME);
}
}
void columns()
// Demonstrates the use of setColumn()
{
PRINTS("\nCols 0->max");
mx.clear();
for (uint8_t col=0; col<mx.getColumnCount(); col++)
{
mx.setColumn(col, 0xff);
delay(DELAYTIME/MAX_DEVICES);
mx.setColumn(col, 0x00);
}
}
void cross()
// Combination of setRow() and setColumn() with user controlled
// display updates to ensure concurrent changes.
{
PRINTS("\nMoving cross");
mx.clear();
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
// diagonally down the display R to L
for (uint8_t i=0; i<ROW_SIZE; i++)
{
for (uint8_t j=0; j<MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0xff);
mx.setRow(j, i, 0xff);
}
mx.update();
delay(DELAYTIME);
for (uint8_t j=0; j<MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0x00);
mx.setRow(j, i, 0x00);
}
}
// moving up the display on the R
for (int8_t i=ROW_SIZE-1; i>=0; i--)
{
for (uint8_t j=0; j<MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0xff);
mx.setRow(j, ROW_SIZE-1, 0xff);
}
mx.update();
delay(DELAYTIME);
for (uint8_t j=0; j<MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0x00);
mx.setRow(j, ROW_SIZE-1, 0x00);
}
}
// diagonally up the display L to R
for (uint8_t i=0; i<ROW_SIZE; i++)
{
for (uint8_t j=0; j<MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0xff);
mx.setRow(j, ROW_SIZE-1-i, 0xff);
}
mx.update();
delay(DELAYTIME);
for (uint8_t j=0; j<MAX_DEVICES; j++)
{
mx.setColumn(j, i, 0x00);
mx.setRow(j, ROW_SIZE-1-i, 0x00);
}
}
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
}
void bullseye()
// Demonstrate the use of buffer based repeated patterns
// across all devices.
{
PRINTS("\nBullseye");
mx.clear();
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
for (uint8_t n=0; n<3; n++)
{
byte b = 0xff;
int i = 0;
while (b != 0x00)
{
for (uint8_t j=0; j<MAX_DEVICES+1; j++)
{
mx.setRow(j, i, b);
mx.setColumn(j, i, b);
mx.setRow(j, ROW_SIZE-1-i, b);
mx.setColumn(j, COL_SIZE-1-i, b);
}
mx.update();
delay(3*DELAYTIME);
for (uint8_t j=0; j<MAX_DEVICES+1; j++)
{
mx.setRow(j, i, 0);
mx.setColumn(j, i, 0);
mx.setRow(j, ROW_SIZE-1-i, 0);
mx.setColumn(j, COL_SIZE-1-i, 0);
}
bitClear(b, i);
bitClear(b, 7-i);
i++;
}
while (b != 0xff)
{
for (uint8_t j=0; j<MAX_DEVICES+1; j++)
{
mx.setRow(j, i, b);
mx.setColumn(j, i, b);
mx.setRow(j, ROW_SIZE-1-i, b);
mx.setColumn(j, COL_SIZE-1-i, b);
}
mx.update();
delay(3*DELAYTIME);
for (uint8_t j=0; j<MAX_DEVICES+1; j++)
{
mx.setRow(j, i, 0);
mx.setColumn(j, i, 0);
mx.setRow(j, ROW_SIZE-1-i, 0);
mx.setColumn(j, COL_SIZE-1-i, 0);
}
i--;
bitSet(b, i);
bitSet(b, 7-i);
}
}
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
}
void stripe()
// Demonstrates animation of a diagonal stripe moving across the display
// with points plotted outside the display region ignored.
{
const uint16_t maxCol = MAX_DEVICES*ROW_SIZE;
const uint8_t stripeWidth = 10;
PRINTS("\nEach individually by row then col");
mx.clear();
for (uint16_t col=0; col<maxCol + ROW_SIZE + stripeWidth; col++)
{
for (uint8_t row=0; row < ROW_SIZE; row++)
{
mx.setPoint(row, col-row, true);
mx.setPoint(row, col-row - stripeWidth, false);
}
delay(DELAYTIME);
}
}
void spiral()
// setPoint() used to draw a spiral across the whole display
{
PRINTS("\nSpiral in");
int rmin = 0, rmax = ROW_SIZE-1;
int cmin = 0, cmax = (COL_SIZE*MAX_DEVICES)-1;
mx.clear();
while ((rmax > rmin) && (cmax > cmin))
{
// do row
for (int i=cmin; i<=cmax; i++)
{
mx.setPoint(rmin, i, true);
delay(DELAYTIME/MAX_DEVICES);
}
rmin++;
// do column
for (uint8_t i=rmin; i<=rmax; i++)
{
mx.setPoint(i, cmax, true);
delay(DELAYTIME/MAX_DEVICES);
}
cmax--;
// do row
for (int i=cmax; i>=cmin; i--)
{
mx.setPoint(rmax, i, true);
delay(DELAYTIME/MAX_DEVICES);
}
rmax--;
// do column
for (uint8_t i=rmax; i>=rmin; i--)
{
mx.setPoint(i, cmin, true);
delay(DELAYTIME/MAX_DEVICES);
}
cmin++;
}
}
void bounce()
// Animation of a bouncing ball
{
const int minC = 0;
const int maxC = mx.getColumnCount()-1;
const int minR = 0;
const int maxR = ROW_SIZE-1;
int nCounter = 0;
int r = 0, c = 2;
int8_t dR = 1, dC = 1; // delta row and column
PRINTS("\nBouncing ball");
mx.clear();
while (nCounter++ < 200)
{
mx.setPoint(r, c, false);
r += dR;
c += dC;
mx.setPoint(r, c, true);
delay(DELAYTIME/2);
if ((r == minR) || (r == maxR))
dR = -dR;
if ((c == minC) || (c == maxC))
dC = -dC;
}
}
void intensity()
// Demonstrates the control of display intensity (brightness) across
// the full range.
{
uint8_t row;
PRINTS("\nVary intensity ");
mx.clear();
// Grow and get brighter
row = 0;
for (int8_t i=0; i<=MAX_INTENSITY; i++)
{
mx.control(MD_MAX72XX::INTENSITY, i);
if (i%2 == 0)
mx.setRow(row++, 0xff);
delay(DELAYTIME*3);
}
mx.control(MD_MAX72XX::INTENSITY, 8);
}
void blinking()
// Uses the test function of the MAX72xx to blink the display on and off.
{
int nDelay = 1000;
PRINTS("\nBlinking");
mx.clear();
while (nDelay > 0)
{
mx.control(MD_MAX72XX::TEST, MD_MAX72XX::ON);
delay(nDelay);
mx.control(MD_MAX72XX::TEST, MD_MAX72XX::OFF);
delay(nDelay);
nDelay -= DELAYTIME;
}
}
void scanLimit(void)
// Uses scan limit function to restrict the number of rows displayed.
{
PRINTS("\nScan Limit");
mx.clear();
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
for (uint8_t row=0; row<ROW_SIZE; row++)
mx.setRow(row, 0xff);
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
for (int8_t s=MAX_SCANLIMIT; s>=0; s--)
{
mx.control(MD_MAX72XX::SCANLIMIT, s);
delay(DELAYTIME*5);
}
mx.control(MD_MAX72XX::SCANLIMIT, MAX_SCANLIMIT);
}
void transformation1()
// Demonstrates the use of transform() to move bitmaps on the display
// In this case a user defined bitmap is created and animated.
{
uint8_t arrow[COL_SIZE] =
{
0b00001000,
0b00011100,
0b00111110,
0b01111111,
0b00011100,
0b00011100,
0b00111110,
0b00000000
};
MD_MAX72XX::transformType_t t[] =
{
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TFLR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TRC,
MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD,
MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD, MD_MAX72XX::TSD,
MD_MAX72XX::TFUD,
MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU,
MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU, MD_MAX72XX::TSU,
MD_MAX72XX::TINV,
MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC,
MD_MAX72XX::TINV
};
PRINTS("\nTransformation1");
mx.clear();
// use the arrow bitmap
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::OFF);
for (uint8_t j=0; j<mx.getDeviceCount(); j++)
mx.setBuffer(((j+1)*COL_SIZE)-1, COL_SIZE, arrow);
mx.control(MD_MAX72XX::UPDATE, MD_MAX72XX::ON);
delay(DELAYTIME);
// run through the transformations
mx.control(MD_MAX72XX::WRAPAROUND, MD_MAX72XX::ON);
for (uint8_t i=0; i<(sizeof(t)/sizeof(t[0])); i++)
{
mx.transform(t[i]);
delay(DELAYTIME*4);
}
mx.control(MD_MAX72XX::WRAPAROUND, MD_MAX72XX::OFF);
}
void transformation2()
// Demonstrates the use of transform() to move bitmaps on the display
// In this case font characters are loaded into the display for animation.
{
MD_MAX72XX::transformType_t t[] =
{
MD_MAX72XX::TINV,
MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC, MD_MAX72XX::TRC,
MD_MAX72XX::TINV,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL, MD_MAX72XX::TSL,
MD_MAX72XX::TSR, MD_MAX72XX::TSR, MD_MAX72XX::TSR,
MD_MAX72XX::TSD, MD_MAX72XX::TSU, MD_MAX72XX::TSD, MD_MAX72XX::TSU,
MD_MAX72XX::TFLR, MD_MAX72XX::TFLR, MD_MAX72XX::TFUD, MD_MAX72XX::TFUD
};
PRINTS("\nTransformation2");
mx.clear();
mx.control(MD_MAX72XX::WRAPAROUND, MD_MAX72XX::OFF);
// draw something that will show changes
for (uint8_t j=0; j<mx.getDeviceCount(); j++)
{
mx.setChar(((j+1)*COL_SIZE)-1, '0'+j);
}
delay(DELAYTIME*5);
// run thru transformations
for (uint8_t i=0; i<(sizeof(t)/sizeof(t[0])); i++)
{
mx.transform(t[i]);
delay(DELAYTIME*3);
}
}
void wrapText()
// Display text and animate scrolling using auto wraparound of the buffer
{
PRINTS("\nwrapText");
mx.clear();
mx.wraparound(MD_MAX72XX::ON);
// draw something that will show changes
for (uint16_t j=0; j<mx.getDeviceCount(); j++)
{
mx.setChar(((j+1)*COL_SIZE)-1, (j&1 ? 'M' : 'W'));
}
delay(DELAYTIME*5);
// run thru transformations
for (uint16_t i=0; i<3*COL_SIZE*MAX_DEVICES; i++)
{
mx.transform(MD_MAX72XX::TSL);
delay(DELAYTIME/2);
}
for (uint16_t i=0; i<3*COL_SIZE*MAX_DEVICES; i++)
{
mx.transform(MD_MAX72XX::TSR);
delay(DELAYTIME/2);
}
for (uint8_t i=0; i<ROW_SIZE; i++)
{
mx.transform(MD_MAX72XX::TSU);
delay(DELAYTIME*2);
}
for (uint8_t i=0; i<ROW_SIZE; i++)
{
mx.transform(MD_MAX72XX::TSD);
delay(DELAYTIME*2);
}
mx.wraparound(MD_MAX72XX::OFF);
}
void showCharset(void)
// Run through display of the the entire font characters set
{
mx.clear();
mx.update(MD_MAX72XX::OFF);
for (uint16_t i=0; i<256; i++)
{
mx.clear(0);
mx.setChar(COL_SIZE-1, i);
if (MAX_DEVICES >= 3)
{
char hex[3];
sprintf(hex, "%02X", i);
mx.clear(1);
mx.setChar((2*COL_SIZE)-1,hex[1]);
mx.clear(2);
mx.setChar((3*COL_SIZE)-1,hex[0]);
}
mx.update();
delay(DELAYTIME*2);
}
mx.update(MD_MAX72XX::ON);
}
void setup()
{
mx.begin();
#if DEBUG
Serial.begin(57600);
#endif
PRINTS("\n[MD_MAX72XX Test & Demo]");
// scrollText("MD_MAX72xx Test ");
}
void loop()
{
#if 1
scrollText("Graphics");
zeroPointSet();
rows();
columns();
cross();
stripe();
checkboard();
bullseye();
bounce();
spiral();
#endif
#if 1
scrollText("Control");
intensity();
scanLimit();
blinking();
#endif
#if 1
scrollText("Transform");
transformation1();
transformation2();
#endif
#if 1
scrollText("Charset");
wrapText();
showCharset();
#endif
}

View File

@ -0,0 +1,40 @@
/* How to use the DHT-22 sensor with Arduino uno
Temperature and humidity sensor
*/
//Libraries
#include <DHT.h>
//Constants
#define DHTPIN 2 // what pin we're connected to
#define DHTTYPE DHT22 // DHT 22 (AM2302)
DHT dht(DHTPIN, DHTTYPE); //// Initialize DHT sensor for normal 16mhz Arduino
//Variables
int chk;
float hum; //Stores humidity value
float temp; //Stores temperature value
void setup()
{
Serial.begin(9600);
dht.begin();
}
void loop()
{
delay(2000);
//Read data and store it to variables hum and temp
hum = dht.readHumidity();
temp= dht.readTemperature();
//Print temp and humidity values to serial monitor
Serial.print("Humidity: ");
Serial.print(hum);
Serial.print(" %, Temp: ");
Serial.print(temp);
Serial.println(" Celsius");
delay(10000); //Delay 2 sec.
}

View File

@ -0,0 +1,86 @@
// Date and time functions using a DS3231 RTC connected via I2C and Wire lib
#include "RTClib.h"
RTC_DS3231 rtc;
char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"};
void setup () {
Serial.begin(9600);
#ifndef ESP8266
while (!Serial); // wait for serial port to connect. Needed for native USB
#endif
if (! rtc.begin()) {
Serial.println("Couldn't find RTC");
Serial.flush();
abort();
}
if (rtc.lostPower()) {
Serial.println("RTC lost power, let's set the time!");
// When time needs to be set on a new device, or after a power loss, the
// following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
// When time needs to be re-set on a previously configured device, the
// following line sets the RTC to the date & time this sketch was compiled
// rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
void loop () {
DateTime now = rtc.now();
Serial.print(now.year(), DEC);
Serial.print('/');
Serial.print(now.month(), DEC);
Serial.print('/');
Serial.print(now.day(), DEC);
Serial.print(" (");
Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);
Serial.print(") ");
Serial.print(now.hour(), DEC);
Serial.print(':');
Serial.print(now.minute(), DEC);
Serial.print(':');
Serial.print(now.second(), DEC);
Serial.println();
Serial.print(" since midnight 1/1/1970 = ");
Serial.print(now.unixtime());
Serial.print("s = ");
Serial.print(now.unixtime() / 86400L);
Serial.println("d");
// calculate a date which is 7 days and 30 seconds into the future
DateTime future (now + TimeSpan(7,12,30,6));
Serial.print(" now + 7d + 30s: ");
Serial.print(future.year(), DEC);
Serial.print('/');
Serial.print(future.month(), DEC);
Serial.print('/');
Serial.print(future.day(), DEC);
Serial.print(' ');
Serial.print(future.hour(), DEC);
Serial.print(':');
Serial.print(future.minute(), DEC);
Serial.print(':');
Serial.print(future.second(), DEC);
Serial.println();
Serial.print("Temperature: ");
Serial.print(rtc.getTemperature());
Serial.println(" C");
Serial.println();
delay(3000);
}